Journal Articles – Winter 2021

Shandong Academy Agricultural Machinery Sciences Submits Patent Application for Ridging Spade for Cultivating and Preparing Combine Seeder of Peanut and Production Method. (2021, 01/25/)

Findings from Naresuan University Has Provided New Information about Biotechnology (Production and antimicrobial activity of trans-resveratrol, trans-arachidin-1 and trans-arachidin-3 from elicited peanut hairy root cultures in shake flasks …). (2021), 692.

Antonio Fabio da Silva, L., Max Ferreira dos, S., Matheus Lima, O., Geocleber Gomes de, S., Paulo Furtado Mendes, F., & Lucas Nunes da, L. (2021). Physiological responses of inoculated and uninoculated peanuts under saline stress. Revista Ambiente & Água, 16(1), 1-10. doi:10.4136/ambi-agua.264

Aryal, P., & Sollenberger, L. E. (2021, 2021). Growth temperature and rhizome propagule characteristics affect rhizoma peanut shoot emergence and biomass partitioning.

Aryal, P., & Sollenberger, L. E. (2021). Growth temperature and rhizome propagule characteristics affect rhizoma peanut shoot emergence and biomass partitioning. Agronomy Journal, 113(1), 335-344.

Aryal, P., Sollenberger, L. E., Kohmann, M. M., Silva, L. S., Cooley, K. D., & Dubeux, J. C. B., Jr. (2021). Plant growth habit and nitrogen fertilizer effects on rhizoma peanut biomass partitioning during establishment. Grass & Forage Science, 1. doi:10.1111/gfs.12519

Barnard, J. H., Matthews, N., & Preez, C. C. d. (2021). Formulating and assessing best water and salt management practices: lessons from non-saline and water-logged irrigated fields. Agricultural Water Management, 247. doi:10.1016/j.agwat.2020.106706 https://www.sciencedirect.com/science/article/abs/pii/S0378377420322502

Cai-Xia, Y. A. N., Juan, W., Xiao-Bo, Z., Xiu-Xia, S., Chang-Song, J., Quan-Xi, S. U. N., . . . Shi-Hua, S. (2021). Identification and screening of saline-alkali tolerant peanut cultivars during whole growth stage. (English). Acta Agronomica Sinica, 47(3), 556-565.

Chen, H., Liu, N., Xu, R., Chen, X., Zhang, Y., Hu, R., . . . Lin, G. (2021). Quantitative proteomics analysis reveals the response mechanism of peanut (Arachis hypogaea L.) to imbibitional chilling stress. Plant Biology, 1. doi:10.1111/plb.13238

Chuantang, W., Feifei, W., Zhiwei, W., Ying, W., Ning, C., Du, Z., . . . Lijun, W. (2021). Improving chemical and sensory quality of high-oleic peanut by application of foliar fertilizer. Oil Crop Science, 6(1), 50-52. doi:10.1016/j.ocsci.2021.03.00

Chung, I.-M., Lee, C., Hwang, M. H., Kim, S.-H., Chi, H.-Y., Yu, C. Y., . . . Soengas, P. (2021). The Influence of Light Wavelength on Resveratrol Content and Antioxidant Capacity in Arachis hypogaeas L. Agronomy, 11(2), 305. doi:10.3390/agronomy11020305

Ci, D., Tang, Z., Ding, H., Cui, L., Zhang, G., Li, S., . . . Xu, Y. (2021). The synergy effect of arbuscular mycorrhizal fungi symbiosis and exogenous calcium on bacterial community composition and growth performance of peanut (Arachis hypogaea L.) in saline alkali soil. Journal of Microbiology, 59(1), 51-63

Culbreath, A., Kemerait, R., Brenneman, T., Cantonwine, E., & Rucker, K. (2021). Effect of In-Furrow Application of Fluopyram on Leaf Spot Diseases of Peanut. Plant disease. doi:10.1094/PDIS-01-21-0052-RE

Dang, P. M., Lamb, M. C., & Chen, C. Y. (2021). Association of differentially expressed R-gene candidates with leaf spot resistance in peanut (Arachis hypogaea L.). Molecular Biology Reports, 48(1), 323-334.

de Breuil, S., Dottori, C., Bejerman, N., Nome, C., Giolitti, F., & Lenardon, S. (2021). Orthotospovirus disease epidemic: molecular characterization and incidence in peanut crops. Journal of Plant Pathology, 103(1), 305-309. doi:10.1007/s42161-020-00686-0

dos Santos, A. F., Corrêa, L. N., Lacerda, L. N., Tedesco-Oliveira, D., Pilon, C., Vellidis, G., & da Silva, R. P. (2021). High-resolution satellite image to predict peanut maturity variability in commercial fields. Precision Agriculture, 1-15. doi:10.1007/s11119-021-09791-1

Eungsuwan, N., Chayjarung, P., Pankam, J., Pilaisangsuree, V., Wongshaya, P., Kongbangkerd, A., . . . Limmongkon, A. (2021). Production and antimicrobial activity of trans-resveratrol, trans-arachidin-1 and trans-arachidin-3 from elicited peanut hairy root cultures in shake flasks compared with bioreactors. Journal of Biotechnology, 326, 28-36. doi:10.1016/j.jbiotec.2020.12.00

Eungsuwan, N., Chayjarung, P., Pankam, J., Pilaisangsuree, V., Wongshaya, P., Kongbangkerd, A., . . . Limmongkon, A. (2021). Production and antimicrobial activity of trans-resveratrol, trans-arachidin-1 and trans-arachidin-3 from elicited peanut hairy root cultures in shake flasks compared with bioreactors. Journal of Biotechnology, 326, 28-36. doi:10.1016/j.jbiotec.2020.12.006

Fernandes Cruz, R. I., Ferreira Da Silva, G., Da Silva, M. M., Santos Silva, A. H., Amilton Santos JÚNior, J., & Farias De FranÇA E. Silva, Ê. (2021). PRODUCTIVITY OF IRRIGATED PEANUT PLANTS UNDER PULSE AND CONTINUOUS DRIPPING IRRIGATION WITH BRACKISH WATER. PRODUÇÃO DE AMENDOIM IRRIGADO COM ÁGUAS SALOBRAS VIA GOTEJAMENTO PULSADO E CONTÍNUO., 34(1), 208-218. doi:10.1590/1983-21252021v34n121rc

Georgin, J., Franco, D. S. P., Netto, M. S., Piccilli, D. G. A., Foletto, E. L., & Dotto, G. L. (2021). Adsorption investigation of 2,4-D herbicide on acid-treated peanut (Arachis hypogaea) skins. Environmental science and pollution research international. doi:10.1007/s11356-021-12813-0

Ha Ngan, N., Ang Lan, H., & Phuong Minh, N. (2021). Recycling Sprout-Growing Mediums in Urban Areas as Compost and New Growing Mediums. Chemical Engineering Transactions, 83. doi:10.3303/CET2183065

Huaiyong, L., Jianbin, G., Bolun, Y., Weigang, C., Huan, Z., Xiaojing, Z., . . . Huifang, J. (2021). Construction of ddRADseq-Based High-Density Genetic Map and Identification of Quantitative Trait Loci for Trans-resveratrol Content in Peanut Seeds. Frontiers in Plant Science, 12. doi:10.3389/fpls.2021.644402

Ill-Min, C., Changhwan, L., Myeong Ha, H., Seung-Hyun, K., Hee-Yeon, C., Chang Yeon, Y., . . . Bimal Kumar, G. (2021). The Influence of Light Wavelength on Resveratrol Content and Antioxidant Capacity in Arachis hypogaeas L. Agronomy, 11(305), 305-305. doi:10.3390/agronomy11020305

Javed, F., Sharif, M. K., Pasha, I., & Jamil, A. (2021). PROBING THE NUTRITIONAL QUALITY OF READY-TO-USE THERAPEUTIC FOODS DEVELOPED FROM LOCALLY GROWN PEANUT, CHICKPEA AND MUNGBEAN FOR TACKLING MALNUTRITION. Pakistan Journal of Agricultural Sciences, 58(1), 205-212. doi:10.21162/PAKJAS/21.700

Kehinde, O. S. A., Tolulope, O. K., Johnson, A. A., Dotun, J. O., & Moruf, A. A. (2021). Response of groundnut (Arachis hypogaea L.) genotypes to accelerated ageing treatment. Notulae Scientia Biologicae, 13(1). doi:10.15835/nsb13110833

Kostandini, G., Tanellari, E., & Gaskell, J. (2021). THE EFFECT OF LAND TENURE AND EROSION MEASURES ON PRODUCTIVITY AND INVESTMENTS: PLOT AND HOUSEHOLD LEVEL EVIDENCE FROM MALI. Journal of Developing Areas, 55(2), 365.

Kubra, G., Khan, M., Hussain, S., Iqbal, T., Muhammad, J., Ali, H., . . . Amir, R. (2021). Molecular characterization of Leucoanthocyanidin reductase and Flavonol synthase gene in Arachis hypogaea. Saudi Journal of Biological Sciences. doi:10.1016/j.sjbs.2021.01.024

Li, Y., Fang, F., Wei, J., Cui, R., Li, G., Zheng, F., & Tan, D. (2021). Physiological effects of humic acid in peanut growing in continuous cropping soil. Agronomy Journal, 113(1), 550-559.

Liang, Y., Cason, J. M., Baring, M. R., & Septiningsih, E. M. (2021). Identification of QTLs associated with Sclerotinia blight resistance in peanut (Arachis hypogaea L.). Genetic Resources & Crop Evolution, 68(2), 629-637.

Lixian, Q., Pingping, J., Yanyan, T., Leilei, P., Hongchang, J., Wenjie, Z., . . . Jingshan, W. (2021). Characterization of AhLea-3 and its enhancement of salt tolerance in transgenic peanut plants. Electronic Journal of Biotechnology, 49, 42-49. doi:10.1016/j.ejbt.2020.10.006

Luo, H., Guo, J., Yu, B., Chen, W., Zhang, H., Zhou, X., . . . Jiang, H. (2021). Construction of ddRADseq-Based High-Density Genetic Map and Identification of Quantitative Trait Loci for Trans-resveratrol Content in Peanut Seeds. Frontiers in Plant Science, 11, N.PAG-N.PAG

Mara Gomes, F., GuimarÃEs Ribeiro, K., Alexandre De Souza, I., De Lima Silva, J., Nascimento Agarussi, M. C., Paula Da Silva, V., . . . Gomes Pereira, O. (2021). Chemical composition, fermentation profile, microbial population and dry matter recovery of silages from mixtures of palisade grass and forage peanut. Composición química, perfil de fermentación, población microbiana y recuperación de materia seca en ensilajes de Urochloa brizantha y Arachis pintoi., 9(1), 34-42.

Martínez-Salgado, S., Romero-Arenas, O., Morales-Mora, L. A., Luna-Cruz, A., Rivera-Tapia, J. A., Silva-Rojas, H. V. V., & Andrade Hoyos, P. (2021). First Report of Macrophomina phaseolina Causing Charcoal Rot of Peanut (Arachis hypogaea L.) in Mexico. Plant disease. doi:10.1094/PDIS-02-21-0337-PDN

Meena, H. N., Yadav, R. S., Jain, N. K., & Yadav, M. (2021). A novel pre‐emergence herbicide (Diclosulam) as an environmentally friendly weed management option in peanut and its phytotoxicity evaluation. Weed Biology & Management, 21(1), 19-27. doi:10.1111/wbm.12219

Mondal, M., Skalicky, M., Garai, S., Hossain, A., Sarkar, S., Banerjee, H., . . . Laing, A. M. (2020). Supplementing Nitrogen in Combination with Rhizobium Inoculation and Soil Mulch in Peanut (Arachis hypogaea L.) Production System: Part II. Effect on Phenology, Growth, Yield Attributes, Pod Quality, Profitability and Nitrogen Use Efficiency. AGRONOMY-BASEL, 10(10). doi:10.3390/agronomy10101513

Muralidharan, S., Poon, Y. Y., Wright, G. C., Haynes, P. A., & Lee, N. A. (2021). Quantitative proteomics analysis of high and low polyphenol expressing recombinant inbred lines (RILs) of peanut (Arachis hypogaea L.). Food Chemistry, 334, N.PAG-N.PAG. doi:10.1016/j.foodchem.2020.127517

Nankya, R., Mulumba, J. W., Lwandasa, H., Matovu, M., Isabirye, B., De Santis, P., . . . Vidigal, P. (2021). Diversity in Nutrient Content and Consumer Preferences of Sensory Attributes of Peanut (Arachis hypogaea L.) Varieties in Ugandan Agroecosystems. Sustainability (2071-1050), 13(5), 2658-2658. doi:10.3390/su13052658

Okello, D. K., Deom, C. M., & Puppala, N. (2021). Registration of ‘Naronut 2T’ groundnut. Journal of Plant Registrations, 15(1), 62-67.

Olayinka, B. U., Abdulbaki, A. S., Mohammed, R. T., Alsamadany, H., Murtadha, R. B., Alzahrani, Y., . . . Etejere, E. O. (2021). Effect of Planting Methods on Growth and Yield of Groundnut Cultivars. Legume Research: An International Journal, 44(1), 74-80. doi:10.18805/LR-546

Olayinka, B. U., Abdulbaki, A. S., Mohammed, R. T., Alsamadany, H., Murtadha, R. B., Alzahrani, Y., . . . Etejere, E. O. (2021). Effect of Planting Methods on Growth and Yield of Groundnut Cultivars. Legume Research: An International Journal, 44(1), 74-80.

Oliveira Aparecido, L. E., Lorençone, J. A., Lorençone, P. A., Meneses, K. C., & Silva Cabral de Moraes, J. R. (2021). Climate risk to peanut cultivation in Brazil across different planting seasons. Journal of the Science of Food & Agriculture, 1. doi:10.1002/jsfa.1114

Paredes, J. A., Cazón, L. I., Oddino, C., Monguillot, J. H., Rago, A. M., & Molina, J. P. E. (2021). Efficacy of fungicides against peanut smut in Argentina. Crop Protection, 140. doi:10.1016/j.cropro.2020.105403

Patel, M., Rangani, J., Kumari, A., & Parida, A. K. (2020). Mineral nutrient homeostasis, photosynthetic performance, and modulations of antioxidative defense components in two contrasting genotypes of Arachis hypogaea L. (peanut) for mitigation of nitrogen and/or phosphorus starvation. Journal of Biotechnology, 323, 136-158. doi:10.1016/j.jbiotec.2020.08.008

Peng, Z., Chen, H., Tan, L., Shu, H., Varshney, R. K., Zhou, Z., . . . Wang, J. (2021). Natural polymorphisms in a pair of NSP2 homoeologs can cause loss of nodulation in peanut. Journal of Experimental Botany, 72(4), 1104-1118. doi:10.1093/jxb/eraa505

Peng, Z., Chen, H., Tan, L., Shu, H., Varshney, R. K., Zhou, Z., . . . Wang, J. (2021). Natural polymorphisms in a pair of NSP2 homoeologs can cause loss of nodulation in peanut. Journal of Experimental Botany, 72(4), 1104-1118. doi:10.1093/jxb/eraa505

Périnelle, A., Meynard, J.-M., & Scopel, E. (2021). Combining on-farm innovation tracking and participatory prototyping trials to develop legume-based cropping systems in West Africa. Agricultural Systems, 187. doi:10.1016/j.agsy.2020.102978

Purwaningsih, S., Agustiyani, D., & Antonius, S. (2021). Diversity, activity, and effectiveness of Rhizobium bacteria as plant growth promoting rhizobacteria (PGPR) isolated from Dieng, central Java. Iranian Journal of Microbiology, 13(1), 130-136.

Qi, H., Liang, Y., Ding, Q., Zou, J., & Mauri, G. (2021). Automatic Identification of Peanut-Leaf Diseases Based on Stack Ensemble. Applied Sciences (2076-3417), 11(4), 1950-1950.

Qiao, L., Jiang, P., Tang, Y., Pan, L., Ji, H., Zhou, W., . . . Wang, J. (2021). Characterization of AhLea-3 and its enhancement of salt tolerance in transgenic peanut plants. Electronic Journal of Biotechnology, 49, 42-49. doi:10.1016/j.ejbt.2020.10.006

Rath, S., Zamora-Re, M., Graham, W., Dukes, M., & Kaplan, D. (2021). Quantifying nitrate leaching to groundwater from a corn-peanut rotation under a variety of irrigation and nutrient management practices in the Suwannee River Basin, Florida. Agricultural Water Management, 246. doi:10.1016/j.agwat.2020.106634 https://www.sciencedirect.com/science/article/abs/pii/S0378377420321818

Rath, S., Zamora-Re, M., Graham, W., Dukes, M., & Kaplan, D. (2021). Quantifying nitrate leaching to groundwater from a corn-peanut rotation under a variety of irrigation and nutrient management practices in the Suwannee River Basin, Florida. Agricultural Water Management, 246. doi:10.1016/j.agwat.2020.106634

Rathore, V. S., Nathawat, N. S., Bhardwaj, S., Yadav, B. M., Kumar, M., Santra, P., . . . Yadav, O. P. (2021). Optimization of deficit irrigation and nitrogen fertilizer management for peanut production in an arid region. Scientific Reports, 11(1), 1-14. doi:10.1038/s41598-021-82968-w

Ren, J., Zhang, H., Shi, X., Ai, X., Dong, J., Zhao, X., . . . Yu, H. (2021). Genome-Wide Identification of Key Candidate microRNAs and Target Genes Associated with Peanut Drought Tolerance. DNA and cell biology, 40(2), 373-383. doi:10.1089/dna.2020.6245

Sathiasivan, K., Ramaswamy, J., & Rajesh, M. (2021). Struvite recovery from human urine in inverse fluidized bed reactor and evaluation of its fertilizing potential on the growth of Arachis hypogaea. Journal of Environmental Chemical Engineering, 9(1). doi:10.1016/j.jece.2020.104965

Sathiasivan, K., Ramaswamy, J., & Rajesh, M. (2021). Struvite recovery from human urine in inverse fluidized bed reactor and evaluation of its fertilizing potential on the growth of Arachis hypogaea. Journal of Environmental Chemical Engineering, 9(1).

Sharma, S., Choudhary, B., Yadav, S., Mishra, A., Mishra, V. K., Chand, R., . . . Pandey, S. P. (2021). Metabolite profiling identified pipecolic acid as an important component of peanut seed resistance against Aspergillus flavus infection. Journal of Hazardous Materials, 404(Part A). doi:10.1016/j.jhazmat.2020.124155

Sinare, B., Miningou, A., Nebié, B., Eleblu, J., Kwadwo, O., Traoré, A., . . . Desmae, H. (2021). Participatory analysis of groundnut (Arachis hypogaea L.) cropping system and production constraints in Burkina Faso. Journal of Ethnobiology & Ethnomedicine, 17(1), 1-15. doi:10.1186/s13002-020-00429-

Sri, P., Dwi, A., & Satjiya, A. (2021). Diversity, activity, and effectiveness of Rhizobium bacteria as plant growth promoting rhizobacteria (PGPR) isolated from Dieng, central Java. Iranian Journal of Microbiology, 13(1), 130-136.

Steiner, F., Queiroz, L. F. M., Zuffo, A. M., da Silva, K. C., & Lima, I. M. d. O. (2021). Peanut response to co‐inoculation of Bradyrhizobium spp. and Azospirillum brasilense and molybdenum application in sandy soil of the Brazilian Cerrado. Agronomy Journal, 113(1), 623-632.

Sylwia Joanna, C., Karol, S., Joanna, D., Piotr, D., Ewelina, P., Krzysztof, F., . . . Robert, B. (2021). Bactericidal Properties of Rod-, Peanut-, and Star-Shaped Gold Nanoparticles Coated with Ceragenin CSA-131 against Multidrug-Resistant Bacterial Strains. Pharmaceutics, 13(425), 425-425. doi:10.3390/pharmaceutics13030425

Tan, G., Wang, H., Xu, N., Junaid, M., Liu, H., & Zhai, L. (2021). Effects of biochar application with fertilizer on soil microbial biomass and greenhouse gas emissions in a peanut cropping system. Environmental Technology, 42(1), 9-19. doi:10.1080/09593330.2019.1620344

Tan, G., Wang, H., Xu, N., Junaid, M., Liu, H., & Zhai, L. (2021). Effects of biochar application with fertilizer on soil microbial biomass and greenhouse gas emissions in a peanut cropping system. Environmental Technology, 42(1), 9-19.

Tekam, M. K., Sultan, A., Mishra, S., Chechi, T. S., Singh, A., Buch, K., . . . Hans, A. L. (2021). Fungal Infection in Peanuts: Pipecolic acid prevents. Current Science (00113891), 120(5), 753-754. doi:10.1016/j.jhazmat.2020.124155

University, C. (2021). Developing heat-tolerant peanuts. Corn & Soybean Digest Exclusive Insight, N.PAG-N.PAG.

Vijay Singh, R., Narayan Singh, N., Seema, B., Bhagirath Mal, Y., Mahesh, K., Priyabrata, S., . . . Om Parkash, Y. (2021). Optimization of deficit irrigation and nitrogen fertilizer management for peanut production in an arid region. Scientific Reports, 11(1), 1-14. doi:10.1038/s41598-021-82968-w

Wang, C., Wang, F., Wang, Z., Wei, Y., Chen, N., Du, Z., . . . Wu, L. (2021). Improving chemical and sensory quality of high-oleic peanut through agronomic manipulation. Oil Crop Science(Preprints).

Wang, C., Wang, F., Wang, Z., Wei, Y., Chen, N., Zubo, D., . . . Wu, L. (2021). Improving chemical and sensory quality of high-oleic peanut by application of foliar fertilizer. Oil Crop Science, 6(1), 50-52. doi:10.1016/j.ocsci.2021.03.00

Wang, S.-y., Li, L.-n., Fu, L.-y., Liu, H., Qin, L., Cui, C.-h., . . . Du, P. (2021). Development and characterization of new allohexaploid resistant to web blotch in peanut. Journal of Integrative Agriculture, 20(1), 55-64. doi:10.1016/S2095-3119(20)63228-2

Yao, Y., Gao, S., Ding, X., Li, P., & Zhang, Q. (2021). The microbial population structure and function of peanut peanut and their effects on aflatoxin contamination. LWT. doi:10.1016/j.lwt.2021.111285

Zhang, H., Li Wang, M., Dang, P., Jiang, T., Zhao, S., Lamb, M., & Chen, C. (2021). Identification of potential QTLs and genes associated with seed composition traits in peanut (Arachis hypogaea L.) using GWAS and RNA-Seq analysis. Gene, 769, N.PAG-N.PAG. doi:10.1016/j.gene.2020.145215

Zhang, K., Liu, Y., Luo, L., Zhang, X., Li, G., Wan, Y., & Liu, F. (2021). Root traits of peanut cultivars with different drought resistant under drought stress at flowering and pegging phase. Acta Agriculturae Scandinavica: Section B, Soil & Plant Science, 1-14. doi:10.1080/09064710.2021.1897663

Zhu, H., Jiang, Y., Guo, Y., Huang, J., Zhou, M., Tang, Y., . . . Qiao, L. (2021). A novel salt inducible WRKY transcription factor gene, AhWRKY75, confers salt tolerance in transgenic peanut. Plant physiology and biochemistry : PPB, 160, 175-183. doi:10.1016/j.plaphy.2021.01.014

Zhu, H., Jiang, Y., Guo, Y., Huang, J., Zhou, M., Tang, Y., . . . Qiao, L. (2021). A novel salt inducible WRKY transcription factor gene, AhWRKY75, confers salt tolerance in transgenic peanut. Plant Physiology & Biochemistry, 160, 175-183. doi:10.1016/j.plaphy.2021.01.014

image_pdfimage_print
2020 Sponsors
Who we are...